Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

X-ray investigations of bicyclic α-methylene- δ-valerolactones. III. ${ }^{1}$ trans-(4aR,8aR)-4a-Methoxy-3-methyleneperhydrochromen-2-one

Jakub Wojciechowski, ${ }^{\text {a }}$ Henryk Krawczyk, ${ }^{\text {b }}$ Marcin Śliwiński ${ }^{\text {b }}$ and Wojciech M. Wolf ${ }^{\text {a* }}$

${ }^{\mathrm{a}}$ Institute of General and Ecological Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland, and ${ }^{\mathbf{b}}$ Institute of Organic Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland Correspondence e-mail: wmwolf@p.lodz.pl

Received 16 February 2005
Accepted 5 April 2005
Online 13 May 2005
The title compound, $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$, adopts a conformation in which the δ-valerolactone and cyclohexane rings are almost coplanar with one another. The β-methoxy substituent occupies an axial position with respect to the cyclohexane ring. The δ-valerolactone moiety adopts a half-chair arrangement, while the cyclohexane ring exists in a chair conformation.

Comment

The title compound, (I), represents a novel group of optically active α-methylene- δ-valerolactones synthesized in a highly stereoselective Michael reaction (Krawczyk \& Sliwiński, 2003). Recently, we have reported the crystal structures of two compounds in the series, i.e. the ethyl 3-methylene-2-oxohexahydrochromene-4a-carboxylate, (II) (Krawczyk, Śliwiński, Wolf \& Bodalski, 2004), and 4a-methyl-3-methyl-eneperhydrochromen-2-one, (III) (Krawczyk, Śliwiński \& Wolf, 2004). A search of the Cambridge Structural Database (CSD, Version 5.26, November 2004 update; Allen, 2002) shows that the system in which the δ-valerolactone ring is condensed with the cyclohexene moiety along the individual $\mathrm{C}_{\delta}-\mathrm{C}_{\gamma}$ single bond [as in (I)-(III)] is unique among crystal structures examined to date.

(I)

(II)

(III)

A view of (I), with the atom-numbering scheme, is shown in Fig. 1. The δ-valerolactone and cyclohexane rings are almost coplanar with one another. The former ring adopts a half-chair

[^0]conformation, with atoms $\mathrm{O} 1, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ and C 5 almost coplanar and atom C6 situated at the flap. The main ring pseudosymmetry element is a mirror plane passing through endocyclic atoms C6 and C11. The three lowest ring asymmetry parameters (Griffin et al., 1984) are $C_{S}(\mathrm{C} 6)=1.7(1)$, $C_{2}(\mathrm{C} 5-\mathrm{C} 6)=25.3(2)^{\circ}$ and $C_{2}(\mathrm{C} 1-\mathrm{C} 6)=28.8(2)^{\circ}$. The cyclohexane ring exists in a chair conformation. The 4amethoxy substituent and $8 \mathrm{a}-\mathrm{H}$ atom occupy axial positions with respect to the cyclohexane ring. The molecule has two chiral centres at C 1 and C 6 . Their absolute configurations are consistent with the reaction mechanism and are both R.

The bond lengths in (I) (Table 1) are close to those observed in the similar compounds (II) and (III). In particular, both exocyclic double bonds $[\mathrm{O} 3=\mathrm{C} 2=1.2105$ (19) \AA and $\mathrm{C} 3=\mathrm{C} 4=1.316(2) \AA$] are shorter than similar bonds observed in the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}$ moiety (1.222 and $1.340 \AA$, respectively; Allen et al., 1992). These bonds are separated by

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The intermolecular interactions (dashed lines) involving the carbonyl O3 atoms. [Symmetry codes: (i) $\frac{1}{2}+x, \frac{3}{2}-y,-z$; (ii) $1+x, y, z$.]

organic compounds

a relatively long $\mathrm{C} 2-\mathrm{C} 3$ bond $[1.495$ (2) \AA; standard value $1.465 \AA$] and are not strictly coplanar, as shown by a non-zero value for the $\mathrm{O} 3=\mathrm{C} 2-\mathrm{C} 3=\mathrm{C} 4$ torsion angle $\left[4.6(2)^{\circ}\right]$.

In the crystal structure of (I), the exocyclic carbonyl O3 atoms are involved in two kinds of intermolecular interactions, namely with atoms C 2 and C 3 of the $\mathrm{O}=\mathrm{C}-\mathrm{C}_{\alpha}=\mathrm{C}_{\beta}$ moiety, and very weak C-H. CO interactions (Steiner; 1997; Steiner \& Desiraju, 1998) involving the axial atoms H11 and H51 of the δ-valerolactone ring (Fig. 2). The respective interatomic distances are given in Tables 1 and 2.
The simultaneous intermolecular interactions of the carbonyl O atom with the carbonyl C atom and the C_{α} atom of the $\mathrm{O}=\mathrm{C}-\mathrm{C}_{\alpha}=\mathrm{C}_{\beta}$ unsaturated system are uncommon among crystal structures examined to date. Only eight structures for which both intermolecular $\mathrm{C} \cdots \mathrm{O}$ distances are shorter than the sum of the respective van der Waals radii ($3.22 \AA$ A Bondi, 1964) are reported in the CSD. The most prominent examples are cuenicin acetate (Sen Gupta et al., 1986) and cordifene oxide (Steurer \& Podlech, 2002).

Presumably, in (I), the intermolecular interactions follow from the prevailing electrostatic attraction of the negatively charged atom O3 (-0.64 e) with the positively charged carbonyl atom C2 (0.87 e). However, the origin of the second interaction, that between two negatively charged atoms O3 and C3 $(-0.20 \mathrm{e})$, is unclear.

Experimental

The synthesis of enantiomerically pure α-methylene- δ-valerolactone, (I), was based on a highly stereoselective Michael reaction of a chiral imine derived from (R)-1-phenylethylamine and 2-methoxycyclohexanone with dicyclohexylammonium 2-(diethoxyphosphoryl)acrylate. Subsequent reduction of the carbonyl group in the adduct with KBH_{4} was followed by lactonization of the resulting 2 -(di-ethoxyphosphoryl)-5-hydroxyalkanoic acid. The final step in the synthesis pathway was the Horner-Wadsworth-Emmons olefination of the resulting α-phosphono- δ-valerolactone with formaldehyde. The enantiomeric purity of (I) as higher than 0.99 was confirmed by gas-chromatographic analysis on a chiral column. Details of the procedure have been described elsewhere (Krawczyk \& Śliwiński, 2003; Krawczyk, Śliwiński, Wolf \& Bodalski, 2004). Colourless crystals of (I) (m.p. 397 K) were grown in 4 d by slow evaporation from a 1:1 mixture of methanol and ethyl acetate.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$
$M_{r}=196.24$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.1555$ (2) \AA
$b=12.3990(2) \AA$
$c=13.3019$ (2) \AA
$V=1015.23(4) \AA^{3}$
$Z=4$
$D_{x}=1.284 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

[^1]
$\mathrm{Cu} K \alpha$ radiation

Cell parameters from 4441 reflections
$\theta=3.3-70.6^{\circ}$
$\mu=0.75 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

[^2]
Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$(\Delta / \sigma)_{\max }=0.001$
$w R\left(F^{2}\right)=0.080$
$S=1.06$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$
Extinction correction: SHELXTL (Bruker, 2003)
185 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.049 P)^{2}\right.$ $+0.0969 P]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$

Extinction coefficient: 0.0045 (7)
Absolute structure: Flack (1983), with 720 Friedel pairs
Flack parameter: 0.0 (2)

Table 1

Selected geometric parameters ($\AA \AA^{\circ}$).

O1-C2	1.3374 (18)	C2-C3	1.495 (2)
O1-C1	1.4490 (17)	C3-C4	1.316 (2)
O3-C2	1.2105 (19)		
$\mathrm{C} 3 \cdots \mathrm{O} 3^{\text {i }}$	3.035 (2)	$\mathrm{C} 2 \cdots \mathrm{O}^{\text {i }}$	3.025 (2)
C4-C3-C2	117.42 (16)	C2-C3-C5	118.11 (12)
C4-C3-C5	124.46 (16)		
C2-O1-C1-C6	32.16 (16)	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5$	5.81 (18)
O1-C1-C6-C5	-58.90 (14)	C2-C3-C5-C6	-34.72 (16)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	-4.28 (18)	C3-C5-C6-C1	59.24 (15)

Symmetry code: (i) $x+\frac{1}{2},-y+\frac{3}{2},-z$.

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.99(2)$	$2.68(2)$	$3.605(2)$	$156(1)$
C5-H51 $^{\mathrm{H}} \mathrm{O}^{\mathrm{i}}$	$1.00(2)$	$2.65(2)$	$3.278(2)$	$121(1)$

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2},-z$; (ii) $x+1, y, z$.

Methyl H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.96 \AA$) and allowed for as riding atoms. All other H atoms were located in a difference Fourier map calculated after three cycles of anisotropic refinement, and their positional and isotropic displacement parameters were allowed to refine freely $[\mathrm{C}-\mathrm{H}=0.94$ (2)1.04 (2) $\AA]$. The refinement of the Flack (1983) parameter is in agreement with the assigned absolute configuration. An attempt to refine the inverted structure led to a Flack parameter of 1.0 (2). Atomic charges derived from electrostatic potentials were calculated using GAUSSIAN03 (Frisch et al., 2003) at the MP2/6-311++G(d, p) level for the X-ray determined coordinates. Grid points were selected according to the CHELPG procedure of Breneman \& Wiberg (1990).

Data collection: SMART (Bruker, 2003); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Atomic charges derived from electrostatic potentials were calculated in the ACK CYFRONET, Kraków, Poland; support through computational grant Nos. 030/1999 and 050/1999 is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1200). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1992). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 691-705. Dordrecht: Kluwer.
Bondi, J. (1964). J. Phys. Chem. 68, 441-451.
Breneman, C. M. \& Wiberg, K. B. (1990). J. Comput. Chem. 11, 361-373.
Bruker (2003). SAINT-Plus (Version 6.45A), SHELXTL (Version 6.14) and SMART (Version 5.629). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T. Jr, Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V. et al. (2003). GAUSSIAN03. Revision A1. Gaussian Inc., Pittsburgh, Pennsylvania, USA.
Griffin, J. F., Duax, W. L. \& Weeks, C. M. (1984). Atlas of Steroid Structure, Vol. 2, p. 8. New York: IFI/Plenum.
Krawczyk, H. \& Śliwiński, M. (2003). Tetrahedron, 59, 9199-9211.
Krawczyk, H., Śliwiński, M. \& Wolf, W. M. (2004). Acta Cryst. C60, o897-o899.
Krawczyk, H., Śliwiński, M., Wolf, W. M. \& Bodalski, R. (2004). Synlett, pp. 1995-1999.
Sen Gupta, P. K., Hossain, M. B. \& van der Helm, D. (1986). Acta Cryst. C42, 434-436.
Steiner, T. (1997). J. Chem. Soc. Chem. Commun. pp. 727-734.
Steiner, T. \& Desiraju, G. R. (1998). J. Chem. Soc. Chem. Commun. pp. 891892.

Steurer, S. \& Podlech, J. (2002). Synthesis, pp. 945-950.

[^0]: ${ }^{1}$ Part II: Krawczyk, Śliwiński \& Wolf (2004).

[^1]: Bruker SMART APEX CCD areadetector diffractometer
 ω scans
 Absorption correction: multi-scan (SHELXTL; Bruker, 2003)
 $T_{\text {min }}=0.795, T_{\text {max }}=0.895$
 5162 measured reflections

[^2]: 1816 independent reflections 1793 reflections with $I>2 \sigma(I)$
 $R_{\text {int }}=0.014$
 $\theta_{\text {max }}=70.7^{\circ}$
 $h=-5 \rightarrow 6$
 $k=-14 \rightarrow 14$
 $l=-16 \rightarrow 15$

